Descriptif
L'objectif du cours est d'exposer les principaux modèles markoviens avec applications en traitements bayésiens (segmentation, filtrage, lissage, prédiction, ...) des données. On traitera en particulier certains développements récents des modèles de Markov cachés et traitements généraux, de type de traitement particulaires, correspondants. L'accent sera mis sur les méthodes classiques d'estimation des paramètres aboutissant à des traitements non supervisés. On présentera différents exemples d'applications dans les domaines de traitement d'images, de poursuite, finances, ou encore codage et communications numériques.
24 heures en présentiel (16 blocs ou créneaux)
Diplôme(s) concerné(s)
Format des notes
Numérique sur 20Pour les étudiants du diplôme IA : Intelligence Artificielle
Vos modalités d'acquisition :
La note finale après rattrapage rentre dans le calcul de la moyenne de la période
Le rattrapage est autorisé (Max entre les deux notes)- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
- Crédits ECTS acquis : 2 ECTS
Support pédagogique multimédia