Descriptif
L'objectif de ce cours est de donner aux élèves les bases mathématiques de l'analyse hilbertienne et de l'analyse de Fourier.
Une première partie du cours consiste à construire et décrire l'intégrale de Lebesgue et les espaces fonctionnels normés à partir de celle-ci. Une notion essentielle de cette partie est la notion d'approximation et elle sera particulièrement décrite dans le cadre général des espaces de Hilbert.
La seconde partie est consacrée à l'analyse de Fourier construite successivement dans les espaces fonctionnels les plus essentiels: fonctions intégrables, espace de Schwarz, fonctions de carré intégrable.
Une première partie du cours consiste à construire et décrire l'intégrale de Lebesgue et les espaces fonctionnels normés à partir de celle-ci. Une notion essentielle de cette partie est la notion d'approximation et elle sera particulièrement décrite dans le cadre général des espaces de Hilbert.
La seconde partie est consacrée à l'analyse de Fourier construite successivement dans les espaces fonctionnels les plus essentiels: fonctions intégrables, espace de Schwarz, fonctions de carré intégrable.
34.5 heures en présentiel (23 blocs ou créneaux)
réparties en:
- Contrôle de connaissance : 1.5
- Leçon : 33
Diplôme(s) concerné(s)
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Diplôme d'ingénieur
Vos modalités d'acquisition :
Contrôle de connaissance à la fin de l'unité d'enseignement.
Unité d’enseignement validée lorsque la note finale de l’UE est supérieure ou égale à 10. Pour chaque unité d’enseignement validée, des crédits ECTS associés sont acquis, et le sont de manière définitive.
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
- Crédit de BCI acquis : 2.5
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Programme détaillé
Le programme détaillé est disponible sur le site pédagogique.