Descriptif
Cours en anglais
Nous commencerons dans ce cours par traiter le modèle linéaire simple (des moindres carrés) avant de présenter le cadre général qui englobe entre autre la régression logistique.
Par la suite, nous considérerons les problèmes d'estimation et de tests dans ces modèles.
Enfin dans une dernière partie nous présenterons la problématique de la sélection de variables dans un tel contexte, en nous appuyant principalement sur la régularisation/pénalisation L1 (Lasso) et sur les méthodes de sélection gloutonnes (ou « greedy » en anglais).
Nous commencerons dans ce cours par traiter le modèle linéaire simple (des moindres carrés) avant de présenter le cadre général qui englobe entre autre la régression logistique.
Par la suite, nous considérerons les problèmes d'estimation et de tests dans ces modèles.
Enfin dans une dernière partie nous présenterons la problématique de la sélection de variables dans un tel contexte, en nous appuyant principalement sur la régularisation/pénalisation L1 (Lasso) et sur les méthodes de sélection gloutonnes (ou « greedy » en anglais).
24 heures en présentiel (16 blocs ou créneaux)
réparties en:
- Travaux Pratiques : 6
- Travaux Dirigés : 3
- Leçon : 12
- Contrôle de connaissance : 3
Diplôme(s) concerné(s)
Parcours de rattachement
Pour les étudiants du diplôme Diplôme d'ingénieur
MDI220 Statistiques (tronc commun)
Notions dinférence statistique de base
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Diplôme d'ingénieur
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
- Crédit d'UE électives acquis : 2.5
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Pour les étudiants du diplôme Echange international non diplomant
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Programme détaillé