
Descriptif
Algorithmic Information Theory (AIT) is based on the mathematical notion of complexity, which was invented 50 years ago to solve issues related to machine learning, randomness, and proof theory. It derives from a fundamental intuition: Complex objects cannot be described by short algorithms. Complexity corresponds to the size of algorithms (and not to their speed; see caveat below).
Creating Artificial intelligence is one of the greatest challenges in the history of humankind. Programs are said to be "intelligent" because they solve difficult problems, such as playing the game of Go. Unfortunately, Artificial intelligence is often perceived as no more than that, just a collection of brilliant, innovative methods to solve problems. Most people don’t imagine that intelligent behaviour can be universally described in terms of algorithmic information.
There is currently a growing interest in Complexity and AIT for their role in the theoretical foundations of Artificial Intelligence. Moreover, practical approaches to complexity based on compression techniques or minimum length descriptions offer efficient techniques in machine learning. AIT plays an important role in mathematics, for instance to set limits to what a formal theory or an intelligent system can do. More recently, AIT has been shown essential to address aspects of human intelligence, such as perception, relevance, decision making and emotional intensity.
Caveats:
- This course does not address the notion of "computational complexity" which measures the speed of algorithms.
- This course is not about Complex Systems either (for this, see MOB_0AT09_TP: Emergence in complex systems).
effectifs minimal / maximal:
8/33Diplôme(s) concerné(s)
- Echange international non diplomant
- Programme de mobilité des établissements français partenaires
- M2 DATAAI - Data and Artificial Intelligence
- M1 DATAAI - Data and Artificial Intelligence
- Diplôme d'ingénieur
Parcours de rattachement
Pour les étudiants du diplôme Programme de mobilité des établissements français partenaires
Basic programming skills in Python.
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Programme de mobilité des établissements français partenaires
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M2 DATAAI - Data and Artificial Intelligence
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Diplôme d'ingénieur
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2 ECTS
- Crédit d'Option 3A acquis : 2
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 DATAAI - Data and Artificial Intelligence
Pour les étudiants du diplôme Echange international non diplomant
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Support pédagogique multimédia