Descriptif
Responsable du cours: Johann Dreo johann.dreo@thalesgroup.com
Les métaheuristiques sont des algorithmes de recherche stochastiques faisant partie des principales classes de solveur en optimisation non-linéaire. Employés sur des problèmes « difficiles » pour lesquels il est impossible de garantir des solutions optimales, ces méthodes permettent néanmoins de trouver des solutions approchées et sont classiquement employées sur des applications d'aide à la décision. Ce cours explore dans un premier temps les classes de problèmes sur lesquels il peut être pertinent d'employer des métaheuristiques en insistant sur l'importance de la modélisation.
Conçues à l'origine sur la base de métaphores (algorithmes évolutionnaires, recuit simulé, essaims, colonies de fourmis, etc.), leur conception s'est mathématisée et met en jeu des outils mathématiques allant de la géométrie aux statistiques. Nous verrons comment aller au-delà des métaphores pour comprendre les aspects communs étant au cœur de ces méthodes, avec un focus sur quelques aspects parmi les plus utiles en pratique.
Enfin, au-delà de la conception algorithmique, nous verrons pourquoi il est nécessaire d'employer une méthode empirique de validation issue des sciences expérimentales et comment mener une étude applicative rigoureuse en employant les dernières avancées en matière d'ingénierie algorithmique.
Conçues à l'origine sur la base de métaphores (algorithmes évolutionnaires, recuit simulé, essaims, colonies de fourmis, etc.), leur conception s'est mathématisée et met en jeu des outils mathématiques allant de la géométrie aux statistiques. Nous verrons comment aller au-delà des métaphores pour comprendre les aspects communs étant au cœur de ces méthodes, avec un focus sur quelques aspects parmi les plus utiles en pratique.
Enfin, au-delà de la conception algorithmique, nous verrons pourquoi il est nécessaire d'employer une méthode empirique de validation issue des sciences expérimentales et comment mener une étude applicative rigoureuse en employant les dernières avancées en matière d'ingénierie algorithmique.
24 heures en présentiel (16 blocs ou créneaux)
Diplôme(s) concerné(s)
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Diplôme d'ingénieur
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2 ECTS
- Crédit d'Option 3A acquis : 2
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Programme de mobilité des établissements français partenaires
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2 ECTS
La note obtenue rentre dans le calcul de votre GPA.