Descriptif
À l'issue du module, l'étudiant devra être capable de donner une explication simple des spécificités de l'objet quantique élémentaire. Il devra pouvoir expliquer les lois d'évolution déterministes de la description quantique et montrer que seule lappréhension des phénomènes considérés par un expérimentateur macroscopique amène, dans certains cas, un caractère probabiliste à lanalyse. En outre, l'approche du comportement quantique passablement contre-intuitif permettra d'illustrer la nécessité daborder un problème physique ou technologique par l'intermédiaire de la mise en place dun modèle, que l'étudiant saura vérifier expérimentalement.
Objectifs pédagogiques
Expliquer et utiliser le formalisme de la mécanique quantique (état d'une particule, décrit par sa fonction d'onde en position ou en impulsion, ou par un vecteur dans un espace hilbertien) dans des cas d'école (puits de potentiel 1D, puits couplés, oscillateur harmonique, spin ½).
Modéliser un système physique en déterminant son opérateur hamiltonien à partir d'un potentiel donné, et prédire ses niveaux d'énergie ou son évolution dans le temps en lui appliquant l'équation de Schrödinger.
Interpréter ce formalisme pour décrire le comportement d'un objet quantique élémentaire (électron, photon).
Décrire les différences entre les objets quantiques et classiques ; retrouver les notions classiques (position, impulsion) à partir d'interférences entre fonctions d'ondes et du postulat de la mesure sur une particule.
Déterminer si un système peut être modélisé classiquement au vu de la structure de ses niveaux d'énergie.
Établir la répartition statistique d'un grand nombre de particules quantiques (fermions ou bosons) à l'équilibre sur l'ensemble de leurs états quantiques.
En déduire les grandeurs macroscopiques associées (énergie interne, entropie).
Décrire la relation entre l'entropie et la quantité d'information contenue dans un système.
Expliquer le caractère isolant, conducteur ou semi-conducteur d'un matériau à partir de sa structure d'états quantiques en bandes d'énergie et la statistique de ses électrons.
Décrire le principe du dopage d'un semi-conducteur et expliquer son influence sur les propriétés électriques du matériau (conductivité, densité de charges, porteurs de charge).
Décrire la structure de composants élémentaires à semi-conducteurs (jonction PN, structure MOS).
Établir leur diagramme de bandes et en déduire la répartition des charges électriques et modéliser le comportement des porteurs.
Retrouver ces éléments dans des structures légèrement plus complexes (PNP, PIN) et en déduire leur fonctionnement électrique.
- Leçon : 8
- Travaux Dirigés : 18
- Travaux Pratiques : 3
Diplôme(s) concerné(s)
UE de rattachement
- TC-B : Physique électronique réseaux
Format des notes
Numérique sur 20Pour les étudiants du diplôme Diplôme d'ingénieur
Le rattrapage est autorisé (Note de rattrapage conservée écrêtée à une note seuil de 10)- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
Le coefficient de l'UE est : 20
Programme détaillé
Contenu, savoirs associés : '
· Formalisme de la mécanique quantique : description d'un objet élémentaire microscopique ;fonction d'onde (en position ou en quantité de mouvement via transformation de Fourier et relation de de Broglie) ; états quantiques ; équation de Schrödinger ; opérateur hamiltonien et ses valeurs propres ; états stationnaires et niveaux d'énergie.
· Postulat de la mesure : correspondance entre grandeurs physiques et opérateurs linéaires ; observables ; lien entre variables conjuguées, opérateurs non commutatifs, et relations d'indétermination de Heisenberg. ·
- Répartition statistique : distributions de Maxwell-Boltzmann, de Fermi-Dirac et de Bose- Einstein ; lien entre niveau de Fermi et nombre de particules
· Différence entre isolant, conducteur et semi-conducteur : structure de bandes d'énergie ; masse effective ; position du niveau de Fermi et remplissage des bandes ; dopage N ou P et influence sur la conductivité et le niveau de Fermi d'un semi-conducteur ; différence entre charge électrique et porteurs de charge.
* Programme détaillé En cours d'élaboration.