Descriptif
Ce cours est dédié à l'apprentissage machine en grande dimension (méthode des plus proches voisins, régression, réduction de dimension, méthodes d'ensemble, sélection de variables, hachage et projection aléatoire).
24 heures en présentiel (16 blocs ou créneaux)
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Programme de mobilité des établissements français partenaires
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Data & Artificial Intelligence
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Echange international non diplomant
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Diplôme d'ingénieur
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
- Crédit d'Option 3A acquis : 2.5
La note obtenue rentre dans le calcul de votre GPA.
Programme détaillé
- The curse of dimensionality
- Nearest neighbors
- Regression
- Dimensionality reduction
- Ensemble methods
- Feature selection
- Hashing and random projection