v2.8.0 (4466)

Enseignement scientifique & technique - SD212 : Graph Mining

Domaine > Mathématiques, Informatique.

Illustration de la fiche

Descriptif

The course will present the main properties of real graphs and some key algorithms for sampling, ranking and clustering nodes.

You will learn how real graphs are structured, with a focus on the scale-free and small-world properties.

You will also learn how to find the most important nodes in the graph, how to detect clusters of nodes and how to classify nodes or predict new links.

A large part of the course will be devoted to programming in Python where you will have to implement various algorithms for analysing real datasets.

Objectifs pédagogiques

The objective is to be able to identify graph structures in data and to apply appropriate techniques for various learning tasks (prediction, recommendation, clustering).

24 heures en présentiel (16 blocs ou créneaux)
réparties en:
  • Leçon : 21
  • Contrôle de connaissance : 2

Soit 38.5 heures de travail personnel estimé pour l’étudiant.

effectifs minimal / maximal:

20/

Diplôme(s) concerné(s)

Parcours de rattachement

Pour les étudiants du diplôme Echange international non diplomant

Students are supposed to have previously acquired basic knowledge in graph algorithms (search, shortest paths), probability, and Python programming.

Pour les étudiants du diplôme Diplôme d'ingénieur

Students are supposed to have previously acquired basic knowledge in graph algorithms (search, shortest paths), probability, and Python programming.

Format des notes

Numérique sur 20

Littérale/grade européen

Pour les étudiants du diplôme Echange international non diplomant

Vos modalités d'acquisition :

Exam + Quiz

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme Diplôme d'ingénieur

Vos modalités d'acquisition :

Exam + Quiz

L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 2.5 ECTS
  • Crédit d'UE électives acquis : 2.5

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme Data & Artificial Intelligence

Vos modalités d'acquisition :

Exam + Quiz

L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 2.5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Programme détaillé

* Spare matrices
* Graph structure
* PageRank
* Clustering
* Hierarchical clustering
* Heat diffusion in graphs
* Graph embedding

Mots clés

Graphs, sparse matrices, ranking, clustering, spectral embedding.

Méthodes pédagogiques

Lectures + Quizzes + Labs
Veuillez patienter