Descriptif
This course presents techniques of reinforcement learning (Markov decision processes, TD-learning, Q-learning, bandit algorithms, Monte-Carlo Tree Search) and their application to a real use case (online recommendation).
24 heures en présentiel (16 blocs ou créneaux)
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Echange international non diplomant
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
- Crédits ECTS acquis : 2 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Programme de mobilité des établissements français partenaires
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Diplôme d'ingénieur
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
- Crédit d'Option 3A acquis : 2.5
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Data & Artificial Intelligence
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Data Science
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 2 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Programme détaillé
- Markov Decision Process
- TD-learning
- Q-learning
- Bandit algorithms
- Contextual bandits
- Monte-Carlo Tree Search
- Online recommendation