v2.10.0 (4913)

Enseignement scientifique & technique - IMA205 : Apprentissage pour l'image et la reconnaissance d'objets

Domaine > Image-Données-Signal.

Descriptif

Ce cours présente les techniques principales de machine learning pour l'analyse d'images. Plus précisément :

- Introduction à l'apprentissage non supervisé ("curse of dimensionality", ACP, ACI, NNMF)
- Introduction à l'apprentissage supervisé (overfitting, OLS, Ridge, LASSO, LDA, QDA)
- SVM (Séparateur à vaste marge)
- Arbres de décision et forêts aléatoires
- Apprentissage ensembliste 
- Réseaux de neurones articifiels (ANNs)
- Réseaux de neurones convolutif (CNNs)

Objectifs pédagogiques

- Apprendre les principes et hypothèses sous-jacentes aux différentes méthodes d'apprentissage

- Comprendre les avantages et les inconvénients de chaque méthode

- Apprendre à les utiliser sur des données réelles et de grande dimension

24 heures en présentiel

Parcours de rattachement

Format des notes

Numérique sur 20

Littérale/grade européen

Pour les étudiants du diplôme Programme de mobilité des établissements français partenaires

L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 2.5 ECTS

Pour les étudiants du diplôme Echange international non diplomant

Vos modalités d'acquisition :

1er cours et TP obligatoires

L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 2.5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme Diplôme d'ingénieur

Vos modalités d'acquisition :

TP et Challenge

L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 2.5 ECTS
  • Crédit d'UE électives acquis : 2.5

La note obtenue rentre dans le calcul de votre GPA.

Programme détaillé

- Introduction à l'apprentissage non supervisé ("curse of dimensionality", ACP, ACI, NNMF)

- Introduction à l'apprentissage supervisé (overfitting, OLS, Ridge, LASSO, LDA, QDA)

- SVM (Séparateur à vaste marge)

- Arbres de décision et forêts aléatoires

- Apprentissage ensembliste 

- Réseaux de neurones articifiels (ANNs)

- Réseaux de neurones convolutif (CNNs)

Mots clés

Apprentissage, apprentissage profond, grandes masses de données, forêts aléatoires, réseaux de neurones (ANN et CNN)

Méthodes pédagogiques

Cours, TP and Challenge
Veuillez patienter