v2.11.0 (5762)

Enseignement scientifique & technique - SD-TSIA210 : Machine Learning

Domaine > Mathématiques.

Descriptif

Cours en anglais
L’'apprentissage statistique s’'intéresse à l’'inférence de modèles pour la reconnaissance de formes, la prédiction et le diagnostic, dans un cadre probabiliste et statistique.
Dans ce cours, l’'étudiant apprendra
- d’'abord à poser un problème d’'apprentissage supervisé (classification et régression) en le formulant comme un problème d’'optimisation de critères statistiques,
- à développer un algorithme d’apprentissage approprié
- et à évaluer la fonction de classification ou de régression ainsi construite.
Les principaux modèles et algorithmes de l’'apprentissage supervisé tels que le perceptron, SVM/SVR, arbre, méthodes d’'ensemble) seront étudiés ainsi que quelques approches génératives. Une courte introduction à l'’apprentissage non supervisé sera également proposée.

24 heures en présentiel (16 blocs ou créneaux)
réparties en:
  • Travaux Pratiques : 9
  • Leçon : 12
  • Contrôle de connaissance : 1.5

38.5 heures de travail personnel estimé pour l’étudiant.

Diplôme(s) concerné(s)

Parcours de rattachement

Pour les étudiants du diplôme Diplôme d'ingénieur

SD204. Modèles linéaires, régularisation 

Format des notes

Numérique sur 20

Littérale/grade européen

Pour les étudiants du diplôme Diplôme d'ingénieur

Vos modalités d'acquisition :

3 TPs notés + Examen (sur le cours, sans documents)

L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 2.5 ECTS
  • Crédit d'UE électives acquis : 2.5

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme Echange international non diplomant

L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 2.5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme Programme de mobilité des établissements français partenaires

L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 2.5 ECTS

Programme détaillé

 

Veuillez patienter